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PROGRAM SCHEMAS WITH EQUALITY 

by 

Ashok K. Chandra and Zohar Manna 

Computer Science Department 

Stanford University 

We define a flowchart schema as being a program 
with the followinö features:    it has a finite 
number of program variables dencted by y^y« 
a finite number of uninterpreted function symbols 
fl' 2,-..    (which may be combined with the variables 

to fora terras) and a finite number of Predicate 
symbols denoted by    p ,p, 

'1^2' Some o? tht func- 
tion symbols may be zero-ary.    These stand for 
individual constants,  and are denoted by 
a;L,a2,...  .    A statement in the program mr.y be: 

(a)    an assißnment statement of the form 

where   t    is any term, 
of the form 

(b)    a predicate statement 

— Pi^i'V •••'V then 52*° \ else poto L2 

where    t,...,t      nre tenns and ■ L1'L2 
are labels. 

Abstract 

*• discuss the class of procram schemas 
augmented with equality tests, that is, tests of 
equality between terras. 

in, J™+heJir5! SSS 0f the ***** « discuss and illustrate the -power" of equality tesio.    it 
turns out that the class of proGram schemas with 
equality is more powerful thiji the "maximal" 
classes of schemas sucgested by other invest!- 
gators. 

+H    A1*?*!* SeCOnd *** ot the PaP61, *• discuss 
the decision problems of program schemas with 
equality,    it is shown for example that while the 
decision problems nomally considered for schemas 
(such as halting, divergence, equivalence, 
isomorphism and lYeedom) are solvable for lanov 
schemas, they all become.unsolvftble if general 
equality tests are added.   *. suggest, however, 
limited equality tests which can be added to 
certain subclasses of program schemas while 
preserving their solvable properties. 

1.    Introduction 

In recent years the study of schemas has been 
widely pursued in an attempt to understand the 
power of programmlrg languages.    In the study of 
program schemas, the functions and predicates 
allowed are usually considered to be uninterpreted 
symbols.    The reason for this is that very simple 
interpreted programs yield all the partial recur- 
sive functions, and therefore interpreted w&mm 
do not provide insight into the difficulty in 
programming; e.g.    the difference between the 
essentially iterative nature cf Fortran and the 
recursive structure of Algol or PL/1. 

Earlier works in this area,  e.g.    lanov 
U'/OJ, Rutledge [l^Jt],  Patcrson [19'.7,  1068] 
and Luckham,  Park and Paterson [1970] ecsentlally 
considered flowchart schemas, and emphasized the 
decision problems for Schemas,  viz.    halting, 
diver/jonoe,  equivaj-ncv,  etc.    Most of the recrnt 
papers,  on the other hand,  e.g.    Paterson and 
Hewitt [1971], strong [l'J71a], Constable and 
Gries [1971] and üarland and Luckham [1971] 
considered more powerful schemas,  i.e.,  flowchart 
schemas with additional programming features like 
counters,  recursion, push-down stacks and arrays; 
and were concerened mainly with the problem of 
translating program schemas from one class to 
another. 

Several formalisms have been considered in 
the literature for the description of sche/ras. 

SS^^^r^^^F^ät S " ^^ " ^ S-^ary of 
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•1'-:■'-« 
or      (c)    a tenninal statement,   i.e.,  a START 
statement,  a HALT statement or a LOOP statement. 
A schema has a unique START statement as its first 
statement.    Free use of goto statements is allowed; 
and all statements except the START statement may 
be labelled.    In addition,  for convenience and 
readability we lescribe schemas usin,; ALGOL-like 
features,   e.g.    wl.ile-stateraents and block struc- 
tures.    T.iese clearly do not add any "power" and 
every such ALGOL-like program can be translated to 
an oquivalrnl prograjn that uses goto-statements 
instead. 

Certain features can be added to flovhart 
schemas,  e.g.    counters or arrays.    A counter IF a 
special variable that takes nonnecative integer 
values.    The operations allowed on a counter"are 
addin.- one,  cubtracting one,  and tartlng for zero. 
An array xc a one-dimensional semi-infinite secuence 
o:  variables that can be referenced by usinp » 
counter to cubscript tlie array. 

In addition,  we also consider recursive Schemas. 
A recursive schema is a set of recursive definitions 
of functionals    F,,F     of the  form rl'F2' 

W ^ !£ P(t .1' .,t ) 
n' then t else t' 

wher 
t 
"l" 

P 
,t 

is an n-ary predicate symbol and 
,    t    and    t»    are terms that may consist 

of function symbols,   functionals and the variables 
yl' ••'y,] 

«„„J-III-T     i_       Zr            i.^coawi rrujects Agency  0 
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It ic quite curprisinui though, that people 
hove co far neijlected to mention one of the most 
useful features: equality tests between teims, 
i.e., statcmontG of the form 

if tj^ = tg then goto 1^ else goto !,„ 

where Va are terms and h'h arc labels. 

The extension of program Schemas to allow 
equality in  quite natural, much as is the exten- 
sion of first order predicate calculus to first 
order predicate calculus with equality. The 
analogy can be extended further in that in both 
cases equality tests nan be treated as just any 
other binary predicate but with a partial inter- 
pretation which in turn Involves all other predi- 
cates and functions used in the system. This 
tends to be an unnatural approach to the treatment 
of equality . Accordingly, we prefer the direct 
approach of allowing the equality test to be a 
basic operation in the system as is the operation 
of assignment to a variable. 

The reason for the omission of equality tests 
in earlier papers can perhaps be traced to the 
following fact. All Schemas discussed in the 
papers mentioned above have one very important 
common property: the behavior of a schema for all 
interpretivtions can be characterized by the 
behavior for n subset of all interpretations 
viz. the Heriirand interpretations. We therefore 
call all these Schemas Herbrand Schemas. To be 
somewhat more precise, in a Herbrand schema, for 
every interpretation there "corresponds" a Herbrand 
interpretation that follows exactly tfte same path 
of computation. Flowchart Schemas with equality 
tests are in generei -".on-Herbrand Schemas, that is, 
they may behave quite differently for Herbrand 
and r.on-Herbrand interpretations. Consider, for 
example, the simple schema: 

START 
if a = b then HALT else LOOP    . 

This schema halts for some interpretations and 
loops for others.    For all Herbrand interpretations, 
however,   it always loops.    It is therefore a non- 
Herbrand schema, and further, thfire can be no 
Herbrand schema that is equivaleivt to it.    A non- 
Herbrand schema that has no equivalent Herbrand 
schema is said to be an inherently non-Iierbrand sohena. 

The use of equality tests does not necessarily 
make a schema non-Herbrand.    Example 0 in Appendix 
A is an interesting instance of a Herbrand procram 
schema with equality tests that has an equivalent 
Herbrand program schema without any equality test 
and also an equivalent non-Herbrand program schema 
(which does have equality tests). 

There are several other features which in 
general give rise to non-Herbrand scheinas:    the 
use of quantified tests ia one such.    Unfortunately, 
it is not partially drxidable if a given schema is 
a Herbrand schema.    This result follows from the 
fact that  it is not partially solvable whether or 
not any given flowchart schema (without equality 
tests) diverges for every interpretation.    Given 
any flowchart r.-hema    T ,  replace every HALT 
statement by the statanent 

if y=a then HALT else LOOP 

where    a    is a new individual constant.    Now the 
new schema is a Herbrand schema if and only if    T 
diverge?  for every interpretation. 

In the rest of this paper, we illustrate the 
power of equality tests (Section 2) and the decision 
problems concerning program Schemas that use .them 
(Section 5).    For the sake of clarity we merely 
give the "flavor" of the samples in the main part 
of the paper, and we state the theorems without 
proof.   Details of the examples are given in 
Appendix A (Section 1*) and the proofs are sketched 
in Appendix B (Section 5).    Detailed proofs can be 
found in Chandra [1972b]. 

2.     The "Power" of Program Schemas with Kiu&llty 

The use of equality tests in program Schemas 
raises an old question that has been asked several 
times and never been answered to our complete 
satisfaction — just what is a schema?   We do not, 
in this paper, propose to answer this questio. .  but 
we can indicate that much remains to be ctudied. 
It has been suggested (Constable and Gries [1971], 
Strong [1971b]),  for example, that the class of 
program Schemas with arrays might be a "maximal" 
class of Schemas,  i.e.,  for every schema there 
exists an equivalent schema in this class.    Now, 
it may be that the class of array-schemas is indeed 
maximal with respect to the Herbrand Schemas, but 
nevertheless all Schemas in this class are Herbrand 
Schemas.    It has been shown, however, that there 
exist certain Schemas using equality tests that ar> 
inherently non-Herbrand.    This means that the class 
of program schanas with arrays and equality tests 
is a strictly larger class. 

A problem is said to be a Herbrand problem if 
it can bp 1 jived by a Herbrand schema.    A hori- 
Herbrand problem is one that can only b« solved by 
inherently non-Herbrand Schemas.    The class of 
program Schemas with arrays and equality tests can 
solve certain non-Herbrand problems  (which by the 
definition of a non-Herbrand problem cannot be 
solved if only arrays are allowed). 

We first illustrate this point with two exam- 
ples of non-Herbrand problems. 

Example 1: Inverse of a unary function 

Consider the following problem:    "Given a 
unary finction symbol    f ,  a finite number of other 
n-ary function synbols,    n > 0 ,  and an input 
variable    x ,  write a program schema that under any 

interpretation will yield a value of    f   (s)    as 
output.    That is,  it finds on element    y    that can 
be e.-qpressed in terms of the given function symbols 
and the input, variable   x ,  such that    f(y)  ="x  ; 
if no such element exists, the schema loops forever". 
This problem, which  is essentially one of inverting 
a given unary function,  is non-Herbrand,  the reason 
being that  if the input    x    is equal to the zero-ary 
function    a    then it has no Inverse in any Herbrand 
Interpretation, whereas for other i-vterpretations 
it may have an inverse.    It  follows that the task 
cannot be performed by any Herbrand schema.    The 
task carnot be performed by any Herbrand schema. 
The task is,  however,  well within the capability of 
flowc.iart Schemas with arrays and equality tests. 
A schema in this class that solves this problem is 
doscrlbod in Appendix A. 

Example .':    HrrhrP-nd-likc   interpretations 

Given a set of function and predicate synbols 
of which there is at leart one zero-ary function. 



wc say tüat an interpretation    I    for this set is 
llortraM-llke jr the«« exists some Herbrand inter- 
pretution   II    mmh tlv.t tliere is a   i-l   homonor- 
phism   l'run   II    into   I  .    in otner words, an 
interpretation   I    |o llerbrond-like if and only if 
for every pair of alctinct terms    t,    and   t 

(made up of tlie «iven functions) the elements in 
I    corrcKDondimr to   t      nnH    t„    are distinct. corrcupondint; to   t.    and 

Now, consider the followinc problem:    "civen 
an Interpretation for a uct of function and 
predicate symbols, of which at lea:it one is a 
uero-ury {•unction, dctcnntni! if the jnterprctatinn 
Is not llcrbraiid-likc.    If the interpretation is 
not llerbrand-like then halt with no output, else 
diverge."    Thla problem is inherently non-IIerbrand 
in nature since a schema that solves this problem 
must diverge for every Herbrand interpretation. 
But for certain other interpretations the schema 
should halt.   A schema with equality tetts that 
solves the stated problem is presented in 
Appendix A. . 

The problem presented above is an abstract 
model closely related to certain problems In real 
life programming.    As an Illustration, consider a 
directed graph (with an identified root node) in 
which each node has two identified pointers leading 
»M?"«1*"    Pointers may lead to a terminal node 

NIL .    The problem is to determine whether or not 
the given graph is a tree.    This problem may be 
modelled by the above probier: with two monadic 
functions representing the two pointers, and with 
the difference that the search for the equality of 
two "terms" Is conducted not for the entire set of 
all terms,  but for those terms not representing 
NIL.    The correepondence is that the interpretation 
is Herbrand-like for this set of term« if and only 
if the correspnding graph is a tree. 

Another related problem is that of determininc 
If a given list is circular.    In this problem,  too,' 
the explicit use of equality In a schema model of 
the computation represents a more natural approach 
than the treatment of equality as an interpr»ted 
predicate. 

While the main interest in equality tests 
stems from the fact that programmers frequently do 
use tests of equality between variables whose 
values are data elements and these tests are often 
of a non-Herbrand nature,  equality tests find some 
interesting applications in problems that are 
really Herbrand in nature.    We give two examples 
below. 

Example j:    Translation of flowchart Schemas with 

Counters 

The recursive schema 

F(x)  - if p(x) then F(F(f(x))) else f{x) 

can be translated to an "impure" flowchart schema 
by introducing a counter.    It can also be trans- 
lated to a rather horrendous flowchart schema 
wluhout any explicit counter (Plaisted (1973]). 
H.wever,  the use of equality c.'ves a relatively 
simple flowchart, schema equivalent to the above 
while retaining the advantage of havint; a "pure" 
schema (all functions and predicates being left 
uninterpreted).    Details are presented in 
Appendix A. 

Example U;    Efficient translation of linear 

recursive Schemas 

Consider the recursive schema   T : 

F{a)    where 

F(y) - if p(y) then g(F(f(y)),y)  else y    . 

Let   I   be an interpretation of   T   for which 

there exists an   n ,    n > 0 , such that   f^a) • 

FALSE and for all   k < n ,    ^(a)  = TRUE .    The 
output of the computation   <T,I>    Is tb« term 

C(g(8{ •••g(iJ1(a),fJ,*1(a)) ...,  f^a)),^))^)  . 

For usual iraplanentations of recursion the 
computation of the Interpreted schema    <T,I)   takes 
time (the number of operations on data structures 
perfomed) and space (the number of values stored) 
both proportional to   n .    The recursive schema 
T   can be translated to an equivalent flowchart 
schema using a fixed memory size (number of 
variables) and time proportional to   n*n .    Using 
equality tests, however, the time can be brought 

iom to some constant times   n^1+c'  , where    E    is 
any arbitrarily small positive number.    Details of 
the construction are given in Append!}: A.    For 
further discussion of this topic,  see Chandra 
[1972a]. 

3.    Decision Problems 

rfe consider the following decision problans 
for classes of Schemas: 

(a) The halting problem — to decide whether a 
given schema in the class halts on every 
Jnterpretaticn. 

(b) The divergence problem ~ to decide whether a 
given schema in the class diverges on every 
interpretation. 

(c) The equivalence problem -- to decide whether 
two given Schemas in the class are equivalent. 

(d) The inclusion problem -- given two Schemas   A 
and    B   to decide whether    A    includes    B ,   i.e., 
for every interpretation either both Schemas halt 
with the same output or schema    B    diverges. 

(e) The iconorphism problem — to decide whether 
two schanas are isomorphio to each other.    (Two 
Schemas are said to be isonorphic,   or opera- 
tionally equivalent,  if the sequences of 
statements executed by both Schemas are exactly 
alike for every interpretation.) 

(f) The freedom problem — to decide whether a given 
Echema in the elaEB is free. 

(g) The translation problem -- to translate any 
schema in the class to an equivalent  free 
flowchart schema (usinp, any number of 
variables). 

It should be noted that the translation problem 
is not strictly a decision problem.    We  include it 
in this list, however, because it  ".s an interesting 
problem closely related to the others. 



All these qucLtlono can be answered in the 
arnmiativc for the (lass of lanov Bchcmaa which 
coniiietE of one-variable flowchart Schemas usiiiQ 
only monadic function and predicate constants 
(lanov UiXO], Hutledcc [19tJ4]).    In view of this 
it is somewhat unexpected that the addition of 
general equality tests to lanov Schemas renders all 
these decision problems unsolvablc.   On the other 
hand, wc show that tfem problems for lanov 
Schemas extended even to nonmonadic functions and 
resets but with limited equality tests are 
solvable. 

It should be stated that for all "conventional" 
Schemas,  i.e.,  all Schemas mentioned in this paper 
and in earlier works, the following problems are 
at least partially solvable: 

(a*)    The halting problea •• to decide whether a 
given schema in the class halts on every 
interpretation. 

(b»)    The non-divergence problem -- to decide 
whether a given schema ever halts, 

(e*)    The non-isoreorphism problem -- to decide if 
two Schemas are not. isomorphic to each 
other. 

(f)    The non-freedom problem -- 
given schema is not free. 

to decide if a 

The notable exceptions are the equivalence 
and inclusion problems.    In general, the equiva- 
lence and inclusion problems as well #E their 
negations are all not partially solvable. 

The   assitjTiticnt depth     ||t(y)||    of a tewn 
t(y)    is defined to be the number of cannon sub- 
terms in   t(y)    excluding   y   itself.    By conven- 
tion, for a constant term   t() ,    |lt()|j = 0 . 

The   depth      |t(y)|    of a term   tly)    is the 
maximum depth of nesting in the term, and la 
defined by: 

|t()| =0, 

|y| - © . 
\t{t1,tz....,tn)\ =max(|t1|,...,]tn!)n 

Note that for monadic terras    ||t|| = |t| , and in 
general      M < H|  •    A few examples illustrate 
this point. In the following table 

(a) stands for   t(y)   ; 

(b) stands for common subterms of t(y) 
(excluding y itself); 

fc) stands for |lt(y)|| ; 

(d) stands for |t(y)| . 

(a) (b) (c) (d) 

y 0 0 
f{a) 0 0 
f(y)                     f(y) 1 1 
f(g(h(y)))               h{y);Ch(y);fgh(y) 3 3 
f(£;(a,y),g(a,y))    g(a,y) ;f(g(a,y), g(a,y)) 2 2 
f(y,L!(a,y))             f(y,g{a,y)) 1 2 

5.1 Notation 

We use tne symbols 

(1) a,a1,a2,... to represent individual constants 

(2) 

(3) 

(or zero-ary functions, if you will), 

to represent program variables, 

to represent functions, and we 

use 

p,P1,P2,... to represent predicates. 

y.y^yg» 

The set of terms is defined by the smallest 
set containing a's , y's and closed under the 
following operation: if 

and f 
1' 2' ' 

,t  are terms, n 

Wh' 
is an n-ary function symbol, then 

is also a term. ,..,tn) 

We use the notation    t(y ,y0,, • ,yn) to 

represent that y^y. .,y  are the only variables '2' n 
that may be present in t . Thus a term t(y) 
may or may not contain the variable y , but 
contains no other variable. A term t() indicates 
therefore a constant term, that is, a term that 
has no occurrences of y's at all. 

Given a nonconstant term t(y) , i.e., one 
containing the variable y , a common subterm 
t'(y) of t(y) is one such that if every 
occurrence of t»(y) in t(y) is replaced by an 
individual constant then t(y) is reduced to a 
constant term. Clearly the terms y itself and 
t(i') are common subterms of t(y) . Also, if 
t^y) and t"(y) are common subterms of t(y) 
then t^y) is a common subterm of t"(y) or 
vice versa. 

3.2 Solvable Classes 

Consider the rather general class S, of 

flowchart schemas with one variable. Schemas in 
S. contain the following statement types (L, and 

Lp are arbitrary labels In the Jefinitions below): 

START statement: STAKE 
y-a. 

Final statements: HALT   or 
LOOP 

AECi(;nment statement: y - t(y) 

Prodioate-test St.: if p(t1(y),...,tn(y)) 

then goto L1 

else goto L,, 

Equality-test st.: if Vy)  = t8(y) 
then ^oto L. 

else goto L„ 

The equality tests allowed must, however, satisfy 
the condition that either t (y) or t„(y) is a 

constant term, or else both |jt,(y)|| and ||t (y)|| 

are less than or equal to 1 . 

T1IE0RKM _1    (Solvtibility o?   S.)   .    For the class S, 

1(a)    the halting problem is solvable 

1(b)    the divergence problem is solvable 



1(c) the cquivalmcc proülom is solvable 

l(il) the inclueion problem is solvuble 

1(c) the icomorpliism problem is solvable 

1(f) the freedom problem is solvable 

1(G)    any scliema can be effectively translated to 
an equivalent free schema (with the addition 
of extra program variables). 

This theorem includee as special cases the 
results of lanov [lofoj, .iutltdge [I96I»], and also 
recent extension« by Kaieli [private ccnraunicationl. 
and Garland and Luckham [1971]. 

As a special case, the problems (a)-(g) are 
solvable for the class of 1-variable monadic 
Schemas allowing resets and equality tests of the 
forms: 

♦iO'V5 » y = t() , y ■ ^(y) , and   f^y) ,f (y)  . 

Consider, next, the class   Sg   of Schemas, 

similar to the class   S1 , but with a change in 

the form of equality tests allowed,  viz.    the 
equality test statonents allowed are of the form: 

i£ t1(y) - t2(y) thai goto Lj e-'se Coto I.   , 

but this time the restriction is that    ||t (y)l| = 

l|t2(y)ll • 

THEOREM S    (Solvability of   S..^   : 

Problems (a)-(g) are solvable fcr the class 

As a special case, the problems  (a)-(g) are 
solvable for the class of 1-variable monadic 
Schemas allowing resets and equalitv tests of the 
form: 

Vy) = t2(y)    where    jt^y) |  =  |t (y) |     . 

5.3   Unsolvable Classes 

It should well be asked why we have the 
"strange" restrictions on the form of equality 
tests above.    The answer is that even slight 
generalizations of the restrictioi fl ebove yield, 
astonishingly,  classes whose problems arc unsol- 
vable.    We demonstrate this on two classes. 

C' '.sider the class    a.    consisting of one- 

variable   y ,  one constant    a ,  no predicates «u& 
only monadic fi-.nction constants.    Statements in 
cchomas of   S      are of the forms: 

START statement: 

Final statements: 

Assignment statement: 

Equality-test St.: 

START 
y - a 

IIA1T    or 
LOOP 

y - My) 

S3   differs from   S1   in tbat nonconftant 

tei^s of depth   2    are used'in Quality tests; and 
it differs from   a^    in that ten„8 te8ted for» 

equality do not have the same assignment depth. 

glt:0REM ^    (Unsolvabilitv of   s )  ,    For the cla68 

S,  : -^ 

3(a)    the halting problem is unsolvable 

3(b)    the divergence problem is not partially 
solvable <- 

3(c)    the equivalence problem is not partiallv 
solvable 

3(d)    the inolufion problem is not partially 
solvable 

3(*)    the isomorphism problem is not partiallv 
solvable 

3(f)    the freedom problem is not partially 
solvable 

3(G)    there exists no effective translation to 
equivalent free scheraas. 

«. 4. lZr the Sake of comPletenesB we should mention 
ttat the nonequivalence and the noninclusion 
problems for this class too are not partially 
solvable.    Of course, the halting, nondivergence 
and nonlsomorphism problems are partially solvable, 
which follows from the general result mentioned in 
the earlier parts of Section 5. 

We introduce next the class   S^    of 1-variable 

monadic schei-as similar to   S,    but with the 

difference that equality tests allowed have the 
following form: 

if y = t(y)  then goto L    else goto L 

where   1 < |t(y)] < 5 ,  i.e., tests may have any of 
the forms: 

y - ^(y) , 

y ' VVy)) 

y = Wyy))) 
or 

if f,(y) = ^(fjy)) 

then goto L. 

else goto L0 

TirROREH Ij (Unsolvability of S,) : 

Problems (a)-(c) for the class S,  are 
unsolvable. * 

A class of echenas is said to be solvable if 
its decision problems (a)-(e) are solvable; 

^i^arly' ? ?1?SS iE 1-lnE0lvable if its decision 
and 

j. 

>, and S, are unsol- 

vable. On comparing these classes it is clear that 
there is a very sharp demarcation between classes 
of one-variable schemas that are solvable and those 
that are unsolvable, depending on the form of 
equality tests allowed. It should perhaps be asked 
how many function symbols suffice to render a class 
unsolvable. It can be shown, for example, that for 
the ctass S, , ,„ereiy U functlo.is are sufficient. 

problems ^a)-(e) are unsolvable. Classes S, 

30 are sol .■able whereas S 



it is nore iiitorcctüin to note, however, that 
tlic««.- function cyiiibo.li: can be "coded" uoint; only P. 
llinction symbols BO tliat cchemnB with one variable, 
two  IXuiotiojir mid );ciu-ral"Tq^ality tests,  i.e., 
U-Kte or tlic rom   t^^fy)  ^ t..fv)  , arc utiEolvable. 

Co rar we have restricted our consideration 
to aclicmas that have only one variable. The reason 
is obvious: one-variable Schemas provide the most 
intcrcatinu solvable classes. When more variables 
are allowed, even a very i'ew features tend to make 
the schanas uncolvable. For example, cchemas with 
two variables, two functions and tests only of the 
£S5!L y4 ■ f(y7j    are unsolvabiel 

It is (jven more interesting, though probably 
not surprisinc, that schemas with a sinßle function 
too are unsolvable; for example, the class of one- 
ftmotion schemas havim; t--sts only of the form 
y.   ■ y,    is unsolvable (^ variablpK gnffifi. in 

this case). 

The proofs of these secondary results are 
also presented in Appendix B. 

■*•    Appendix A — Detailed »ixamples 

Kxamplc 0:    A llerbrand schema with equality 

Not all Schemas that use equality tests are 
non-llerbrand.    Consider,  for example, the schema 

START 
yl *" y2 *" a; 

L:    i£ ViV]) then 

if p(y0) then 

bcL;in 

yl - f(yl); 

y2 - f (y-,); 
goto L; 

end 

else if y. - a then IIALT else LOOP 

cJ^c 11 >! ■ y« then BAM else LOOP    . 

This is a llerbrand EChema because the equality 
tost    y,   = y„   rxxct always be true,  and tUo 

equality test    y.   ■ a    can never be entered.    The 

riven schma is hence equivalent to tue followin;' 
rchema, which has no equality test. 

START 
y •  a; 
L:     i£ P(y)  then 

bef;in 
y - f(y); 
■joto L 
end 

else ;;ALT. 

The following schema is also oquivalo.-.t to t::e 
above Schemas, but  it  is a non-Herl-rand schcr-ia 
because the LOOP statement  in it can never be 
entered for any aerbrand Interpretation.    The 
scnema is, liowover, not inherently non-Herhrand. 

START 
y - a; 
L:    if p(y) tlien 

if y ^TTy) then LOOP 
else begin 

goto L 
end 

else HALT    . 

Example 1:    Inverse of a unary function 

For simplicity we assume that the only unc- 
tions are a single zero-ary function   a , the given 
unary function    f   and a binary function   g .    The 
possible terms are therefore: 

x ,  a ,  f(x)  , ü(x,x) ,  f(a) ,  g(a,a)  ,  g(x,a)  , 

3(a,x)  ,  f(f(x)) ,   ... 

The schema for any other set of functions is similar 
to the one for this particular case. 

Symbols o ,c ,c, stand for counters. 

Strictly, the only operations allowed on counters 
are adding and subtracting one, and testing for 
zero. For convenience, however, we will also allow 
other ctatemet.ts such as c.<-0, c.<-c., and 

tests like c = c , as it is clear that these 

operations can be performed using only the legal 
operations and additional counters. 

(1) -- START 
A[0) ~x; 
c1 -0; 

{?-)  -    c2 - 1; A[c.] - a; 

ii)   —    REPEAT: y - A^]; 

(1») -- _if f(y) = x then HALT(y);. 

c, -cL5+l; A[c2] - f(y): 

c2 »«j+ll A[c2] - e{y,y); 

c5-cl; 

while c2 / 0 do 

beLun 

C2 - c,.;+1; Atc21 '" «(Afc;]»y)j 
8a - o2+l; A[cJ - 8(y,At0j))j 

mi; 

(5) -- 
'1      ^l1' 
•oto REPi'iT 

(-')) 
After the initialisation phase (lines (1)  to 

AtO) • X    ,    A[ll  = a    ,    8-  • 0    ,    8« » 1    . 

After oor-.pletin' one pass through the outer loop of 
the pro-ra.T. i'lines ;.) to (5)) 

A[E] - f(K) , A[J] = c(>:,x) , 8X - I # ea • 5 I 

ar.i after a second pass 

KV 1  ■ f(a) , At5]     Jß-,*) , 
■'■■[■']  - g(x»«)  ,  A(7]  - .3(a,x)  , ^ « 8 , «a • 7 , 



Vne aitiürithu worl-.ü eis I'üHOWB:    two pointers    c. 

iind   ü^   rorcri-Mico the array.     A[o1 ]    reprecents 

the "current" va.'.iie.    If tlic cui-rcnt value is not 
the inversi!, as detcrTiinud by lino (ti),  it is 
ooinpoccJ with valucc prevedin^ it in the unumora- 
tlon by i'uniition applications, and the nev values 
obtuinrd ore added to the array. 

It can be shown by induction that the process 
of enumeration generates and tests each possible 
term exactly once.    This means tliat the inverse 
will be found if it exists.    The point at which 
tne test of the Inverse is made could be changed 
to effect time efficiency but without altering the 
main features of the program. 

Example 2:    llerbrand-like interpretations 

We assume that the only functions are a sin- 
gle zero-ary function   a , a unary function   f 
and a binary function    g .    Therefore the sot of 
terms includes 

a , f(a) , g{a,a) , f(f(a)) , g{f(a),f(a)) , 

g(a,f(a)) ,  ... 

The required schema is 

(1) -- START 
A[0] -aj 

(a) -- c •- c 
1   2 

(i) — REPEAT: 

while c. j> 0 do 

(I«)—1   begin 

%  - »If*1! 
if AlcjJ = y then HALT; , 

end; 
l_ , 

c2 -c2+l; A[c2] - f(y); 

02 "c2+1; Atc2J " tfoW)l 

while c, /E 0 do 

becin 

c, i. Cj-1; 

C2" 
end; 

c^l; 

c2+l; A[cyJ - c(A[c3],y); 

c^l; A(c2] - (;(y,A[oJ); 

Kxainplo 5;    Translation of flowchart Schemas with 

Counters 

The recursive schema 

F(a)    where 

F(y) - if p(y) then r-{K(f(y)))  else f(y)  , 

can be translated to a flowcharf schema with one 
program variable   y   and one COUJ ter   c . 

START 
y - a; 

(1) - c -0; 
while true do 

if p(y) 
then begin 

y - f(y); 
(2) - c - c+1; 

end 
else begin 

y-f{y); 
(5) -- if c = 0 then goto DONE; 
CO -- c <- o-l; 

end; 
DONE: IlALT(y) . 

Note that the test " c = 0 " above is not a test of 
equality between two data structures but rather 
between an interpreted variable,  i.e.,    c , and an 
interpreted constant,  i.e.,    0  . 

The corresponding equivalent flowchart schana 
with equality tests instead of counters uses three 
variables: 

y   plays the same role as the variable   y   above, 

z    effectively siniulates a counter, and 

w    is a temporary variable. 

The idea behind the method is that the variable    z 

Elnulates a counter, where    f (a)    stands for the 
intotjer    i .    Therefore, the statement    z •- a 
stands for the statement    c •- 0 ,    z - t{z)    stands 
for   c r- c+1 ,  and the statements 
[w t- a; while f{w) ^ a do W <- f(w); z •- w]    stand 
for    c •- c-1  .    Wc have to bo careful,  however. 

The terra    f (a)    stands for the integer   n ,    n > 0 , 
only if for no two distinct numbers    i, j < n    are 

the tens    f (a)    and    f (a)    equal.    Interpreta- 
tions for which the counter is required to count  up 
to an integer    n    where there exist    i,,i <n , 

i / ,1 ,   such that    f (a)   ■ fJ(a)    are called looping 
IntorpretatJons.    It can be shown that for looping 
interpretations the given recursive schema never 
halts.    The Fsquircd program schema is therefore 
easy to construct: 

(5) --   goto RKPEAT 

This program is quite similar to the previous 
one in the manner of enumeration of terms. The 
fact that each term is generated exactly once is 
used in nakino the test (It) to check if a value 
is repeated. 



(1J 

CO 

.".TAUT 
y - Ai 
3 - a; 
while ' .tub i iü 

il' r(y)' 
then bctiin 

r y - i-(.v); 

w -a; 'check 
i wlrl.lc w / ^ do Ifor a 
i If w * r(x) 1 looping 
i tUon UOP inter- 
i "Iso w - ffwl: Iprcta- 

L „, 
if w = f(x)  then IXJOP^ition 

z .-f(z); 
end 

else bo^in 
y - f(y)i 
if ^ = a then uoto DONE; 

while f(w) ^ z do w - f(w); I 

—  lL 1 
end; 

DONE:    HALTCyTT 

Example k:    Efficient translation of linear 

recursive schema- 

Consider the recursive schema   T : 

F(a)    where 

r(y)  - if p{y) then t;(F(f(y)),y)  clee y    . 

Let    I    be an interpretation of   T    for which 
there exists an    n ,    n > 0 ,   such that 

^(a)   . FALSE ,  and    fk(a)   ■•= TRUE    for all    k < n 
The output of the computation of    <T,T>    is 

8(4S(ß( •■•R(fn(a),fn-1(a)) ...r(a)),f(a)),a)   . 

The computation of    <T,I>    takes tri.e and 
space proportional to    n    -- for usual iinplemonta- 
tions of recursion.    The recursive scheua can be 
translated to an equivalent  flowchart schema    T' 
ucini; a fixed memory size (number of variables) 
such tnat the computation of    <T',I>    takes tiro 

proportional to    n   , aas followt; 

CTART 
y - a; 
whJlc P{y) do y - f(y); 
■■'■ - a; 
wljilc p(:-:)  do 

bo,;in 

h - *« 
z - a; 
while pCx^ do 

be^in 
Xj - t{*x)l 

B -ffz); 
end; 

end 
HALTCyT • 

f'Va) 

f "(a)     i > 1 

i'-V) 

Ucinc equality tests, however, the tlric can 

be brought down to   n1+f    whore    €    is an arbl- 
trai-ily small number.   We first describe an oquiva« 
lent flowchart schema with equality tests with a   * 
time bound of   ivv'     . 

Intuitively, the idea is the following.    The 
earlier fJowchart schema spends most of its time 
trying to find the inverse of the function   f 

(i.e.,  civen    fV) , to find   fi"1(a)  )  — though 
this operation is somewhat hidden in the program. 
We can speed up this by planting a value at a 
"distance" of about   /n     from the end 
and compute inverses from this planted value. 
Time taken to find the square root is of the order 

of   n '■" , averace time to find the inverse is 
1/2 

n    "    (done   n   times) and time to reset the 

planted value is of the order of   n    (done   n1/2 

times).    in general, by planting    (k-1)    values 
(instead of Just one) at distances 

,Vk .    2/k _    5/1, ,(k-l)A 

from the end we get a time bound of n1*^1/1^ 

START 
y " a; 

(1)   —    while p(y)  do y - f(y); 
(3)  —    if y = a then HALT(a); 

x - f (a); 
(;> --   CHICK:    y-L -yj ~ a; 

wnile y1 ^ x do 

while y„ ^ x do 

Ijegin 

y2 " f(y2) '• 
y3 *■ f(yj); 

if y^ = y then ^oto FOUND; 

end; 

CO 

(5) 

(') 

end; 

'■ - f CO ; 

.-oto CIIHCK; 

i-OUTTO:     z - y; 
.''-,, - x; 

REPEAT:    x    - a; 

while >:,, /  | do 

bo./in 

end; 

ttijl 

-    x . ^(a) 



en •-   wlülu a / ;•-   do 

iiQi'.in 

Mkk %*}) t*dox,~ f(X.); 

(3) - 

(9) -- 

8 - -V 
end; 

TEST:    if z = a thai ItALT(y); 
xa - a' JÜ1ÜS {*o / 2) and (x2 / x) 

dox   -f(x0); 

JQto RKPEAT 

Mne (1) detects if ther« exists an   n > 0 

y? tfn ^S : F^E ftnd  ^ ' ™* «» 
«««!   ! i   such *"   n   doe8 not «ist the 
prognun loops forever which is the desired opera- 
tion.   If   n   exists it foliows that for all 
i,J < n , if   i / j   then   fi(a) ^ ^^j  #   At 

this point    y = f^a)   . 

(li**1^ n T,
0
   

the P1"0^*11 halt« with output   a 
(Imc 2).    if   „ > 1   the CHECK loop soonent of 
the pro-am from lines (}) to (k)  finds the 

This if ^nSiKiVe intCeer   m    Such that    -n*™ > n . ihis is done by successively tryine larCer and 
larger values    i= 1,2,5,...    for   m   until one'is 
fend such that    in > n .    This is the required 
value for   m .    We use the variable   x   to store 

the value of   f^a)    and the variable   y     to 

"count" up tel«i    by successively takinG values 

a,f(a),...,f     (a)  .   The final value of   x   is 

£■{•)    and it remains unchanged for the rest of 
the program. 

Kxecution of lines (5) to (C) „ow causes the 

variable   x^^   to be "planted" at   fB*B(x)  .   The 

while statement between lines (?) and (3)  consti- 
tut es the main part of the profrrm.    The variable 
y   takos on values in the sequence 

• 'Ad •.•i:(f"(a),fn-1(a)), ...),l•n-,T, 
(a)) 

On exit from this while-loop the value of    /    la 

Lines (9)  and (5) to (C) are then used to 

roset the planted value to   f"'^)    and t),o 
process la repeated.    Alter It,   the planted value 
is reset tc    f**M  ,  and co on.    A ^ caso 

ia encountered when the Integer correcpondinr to 
«    beoor,eB less than   m .    m this caso, the nort 
planted value should be simply   a , and hence the 
VM ol line (9)   instead of cmply retting    x    - x 

5.    Appendix B — Proof of Theorma       < ' 

We use the terminology   f^ 3 T2   to mean the 

scheinas   ^   and   Tg    are equivalent, and   T 
to mean   T, includes   T, 

l0h 

Proof of meorem 1 (Colvability of   S    ) 

Ma)/(b)f(e)--     The solvability of the halting, 
divergence and equivalence problems follows from 
the solvability of inclusion: 

(a) Given a schema   T    of   S1 ,    T   halts if and 

Ä*f SmJ ?i V^eTe   H   rePreBents the schema 
mmi BAM(«)]   that always halts with output   a. 
and   r     is the schema   T   with all HALT statements 
changed to   HALT(a)   . 

(b) Given a schema   T    of   S;L ,    T   diverges if 

and only if   L D T , where   L   represents the 
schema [START j    WOP] that always loops, 

(c) Given two Schemas    Tn    and   T     of   S 

if and only if   f^ 3 T2   and T8at. 

iigll  We give below only the intuitive idea 
behind the proof of solvability of the inclusion 
problem. Given two Schemas T  and T  of S 

to decide if   T    D I, 
1        *8    "    0l 

an automaton is constructed 

and   T      in 

and   T2   both hal^ 

halts and T, 

that simulates the computations of   E 

parallel.    The input tape of the automaton repre- 
sents an interpretation for   t,    and   T    .    The 

input tape is rejected if   f 

but with different outputs, or if   T 

diverges, under the interpretation corresponding   1 

to the input tape; otherwise, the tapa is 
accepted. ' 

To describe the operation of the automaton we 
firct introduce the notion of the "specification 
state" of a variable    y  .    The specification state 
represents the outcomes of all possible tests that 
could be perfonwd by a schema without changing the 
value of the variable    y    (and using terms no 
^lar .-or" than the "larcest" term used in the Schemas 
T,    and    i'    ).    The automaton simulates the corapu- 

tai ions of   Tj    and    T,    not Just for the .".aln-line 

computation,  but  for a larL:e number of "instances" 
of ti:e variable   y .    There 1« one instance for 
eacn aefiignment statement and each constant terra 
(no larger than the latest tern).    Tlie computation 
of an  inctanco (for an astigrunent statement and a 
tens;  represents what the schema would really do if 
Ita main-line variable happened to equal that 
constant term after that aBSlgnmcnt statement. 

The 1 omputation on each instance is kep*  in 
step,  and the automaton heeps track of which 
instances have equal values at each step.    This 
cnahlec the uutomaton to doxect whether the input 
tape really represents a feasible interpretation. 

The reason that this specification state 
approach worl-.s with limited equality tests is that 
the finite specification state carries sufficient 
information to allow it to be updated.    This  is not 
true for general equality tests,  «.a,    in the 



cXttcses C, and ü^ , If a specification ctatc 

were to carry all information ncceccary to update 
it, tlio amount of information would crow without 
bound as the computation proceeded. 

M?)!  The proof of iEomorphism io similar to the 
proof of inclusion, except that the automaton not 
only keeps track of which instances are equal in 
value at each step, but also which equal instances 
have an isoraorphic hJ'tory. The automaton can 
then detect if for any input tape the computations 
of the two Schemas are not iscmorphic. 

l£f}_! Freedom or nonfreedora is detected by the 
algorithm 1(g) that translates a given schema in 
S1 to an equivalent free schema; 'if ever a test 

statement is detected for which some exit is not 
feasible the schema .s not free, else it is Tree. 

Ug):  We cive below a short outline for the 
translation of a given schema T in S, to an 

equivalent free schema T, (using several 
variables). x 

A "partial specification state" is like a 
specification state but with the possibility that 
the values of certain predicate and equality tests 
may be unknown. The schema T     has a (lar^e) 

number of variables, one variable for each assißn- 
ment statement and each constant term (no larger 
than the largest term used in T ). 

The schana T, begins by assigning all vari- 

ables their corresponding initial values. The 
schema f.    has a (large) number of "chunks" of 

statements. Each chunk updates the variables. 
This corresponds to one step of the automaton in 
the proof of inclusion. This updating can be 
performed without introducing any nonfreedon. 
Each chunk is associated with the following infor- 
mation (line (lii) is unnecessary for this problem, 
but it is required to solve the freedem problem). 

(i)   The statement in T corresponding to each 
variable in T, • 

(ii)  Which variables have equal values. 

(lii)    Which pairs of variables have the property 
that they both would have tested the came 
value if we hadn't explicitly avoided that 
(i.e.,  if both variables are "entered" by 
the main-line computation, nonfreedom would 
result). 

When updating is performed,  no predicate or 
equality test is introduced whose outcome is Jjiown 
from the informatior. corresponding to the chunk. 
Loops are dctectpd as before; and some variables 
may beccme "inactive" either by looping or halting. 

Proof of Theorem 2    (Solvability of    G,   ) 

The proof of Theorem S is similar to the proof 
of Theorem 1 except that the formal definition of 
the specification state reflects the different 
kind of equality tests allowed. 

Proof of Theorem 1  (Unsolvability of   S    ) 

iishläh     Wc define a class   S     of Schemas having 
two variables    y..    and   y 

consist of the following: 
and whose statements 

Start statement:      START 

Final statements: 

Test statement: 

J'o - a; 

HALT    or 
LOOP 

if p(yi) then goto L. 

else goto L. ; 

It was shown by Luckhara,  Park and Paterson 
[1970] that the halting problem for the class    S 

is unsolvable, and that the diver^eiue problem is 
not partially solvable. 

To show the halting problem for   S,    to be 

unsolvable we reduce the halting problem for    S 
5 

to that for   Sj  ; that is, we describe an algorithm 

that takes any schema   T.    in the class 

input and yields a schema    T\      in the class 

such that    Tl      halts if and only if   T      halt 

T      as input and yields as output 

>,    such that    T" 

Similarly, to show that the divergence problem for 
3^, is not partially solvable we describe an algo- 

rithm that take 

a schema   f,      in the class    S 

diverges if and only if   T     diverges.    We will 

unify the construction for the two cases by con- 
struct inj for both cases a schema   T,    in the 

class    S^    but auijTnented with a special final 

statement called the REJECT statement: 

REJECT  statement:       REJECT     . 

The REJECT statement signifies that the  inter- 
pretation  is unacceptable and is rejected.    Loosely 
the idea is the following. There exists a map from 
interpretations of    T,    that are not rejected onto 

the Interpretations of T such that the computa- 

tion for T, under an interpretation halls if and 

only if the coTiputation for T_ under the corres- 

ponding interpretation halts. 
Mow it is clear that  if we replace all REJECT 

statements  in    T,    by 11AIT statements to get    T1,,    , 

then    T,      halts on every interpretation if and 

onl.v if    T      halts on every interpretation. 

Similarly,   if we replace all REJECT statements by 
LOOP statcr-.entr, to set    T';      then   T','      diverges then   T! 

on every interpretation  if and only if   5, 

di/erges on every interpretation. 
'■n a achona    Tr in 

in 

we construct the 

correspondin,; schema    T,     in    S.    (with the addi- 

tion of REJECT statements)  as follows.    We use the 

10 



vari.-ibl«   y    of   T,    to rvprcsent. the latost 

y,    <■■•   y,   .   The 

as in   T,- 

varlablo tu^trd in    T,   ,   I.e.,     , 

plays the saine role in    T. iViiictlon    t' 

Wo UEO a now function 
and tests of the. form 

IS   called a "tRst function"; 

if p(y) then ... else 

in Ve ,  will take the form 

li(e(y)) then ... else 

5 

i£ aiv) 

in T-, . In addition we use two "control" func- 

tions f. and f2 . Their roles are the followinc: 

if y stands for y2 (of S ) then f (y) will 

equal the value of f(y1) at that instant in the 

computation unless, of course, a REJECT statement 
is reached earlier. The role of f„ is analogous, 

i.e., if y stands for y  then f0(y) will 

equal the value of l'(y0) . 

The schema T, simulates a computation of 

Tj as follows. In the diagram below the elements 

a , f(a) , f(f(a)) , f(f(f(a))) are represented 
by contiguous squares from left to ri^ht. We 
superimpose on this diacram the computations of 
both T.- and T, 

the computation of Tc 

Suppose, at come instant in 

y,  is at point A , 

and y2 is at C , and suppose y  is beii.g 

"read".  T, makes certain that the f, pointprs 

from the squares scanned, point to the ri^ht of 
y,, . Suppose that we continue to "read" fror: y 

until y  reaches point B vhere the sohena 1r 

starts "reading" from y2  .      Ty    checks that the 

1'     pointers from the squares scanned, point to 

the right of    B . 

fTTTT 

±L 
push y1 —» 

(T.   roads    y.) 

nu 

push y,,   > 

(T,   reads    y ) 

Wo are now in a position to descriV' the con- 
struction of   t,  .    Without loss of generality, we 

will uEsume that in   T5    the first test statement 

tests the variable   y    .      T,    will effectively 

contain    2   copies of   T     except there is only 

one start statement.    Wo will call these copies   A 
and   B .    We will label statements of   T,.    by 

numbers    1,2,5,...  .    The corresponding statements 
in    Tj    will be labelled    1-A ,  1-B ,  2-A ,  2-B , 

i-A ,  3-B ,...   . 

(i) The start statement in T^ is 

START 

goto i; 

Reproduced from 
be»! availabla fnPy 

The corresponding statements in   T,    are: 

START 
y - a; 
if f(y) ^ f2(y) then REJECT else goto i-A; 

Note that the test    f(y) ^ f (y)    is not 

strictly an allowed statement.    We use this 
form for clarity:     it can really be 
"simulated" by the statements: 

if f(y)  /< ^(^(y))  then REJECT; 

if fg(y) / ^(^(y))  then REJECT 

else goto i-A; 

(ii)    For any test statement    i    in   T    ,  if   i    is 

of the form: 

i: :>'! - tiy^i 
if pt'y,) then coto j else goto k; 

the corroEponding statements  1-A and i-B are: 

i-A:  if fa(y) / f2(f(y))  then REJECT; 

y - f(y); 

11 ß(y) ■ 8(ß(y)) then i-oto j-A 
else f;oto k-A; 

and 

i-3: 1| f(y) /■  f2(f.(y)) then RE.TECT; 

y •- fa(y); 

il S(y) -; fifAy))   then goto j-A 

else j.-oto k-A; 

(iii)     :'or any test statement    i    In    S    of the form: 

i:    Vi3~f(y2)i 

i_[ p(,v„) then ,-oto ,i else goto It; 

i-A and i-B are similar to the above, 
oMc-ept, one has to interchange f. with f,., 

and A with B . 

(iv) IIAI.T and LOOP statements remain unchanged. 

This copipletcs the coiiEtruction. 
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iquare.    ir jwintcrs were to ix- ciieckeJ twice and 
it turned uut that they were required to point to 
mTcront vn.lues tiiere mijit exist no intei-preta- 
Uon miUtj/tBC tUt« condition — the reuult would 
he tliat aJl interpretationu of   T,    woiad be 
rejected. -5 

2i£i:      The non-partial eolvability of tlie equiva- 
lence problem followc directly frcm the non-partial 
eolvability of the divergence problem (Part (b)), 
since a program schema in   S,,    diveraes if and 

only if it is equivalent to the schema; 

START 
y - a; 
LOOP    . 

^iSÜ.:  The non-partial solvability of the inclu- 
sion problem follows immediately from the non- 
partial solvability of the equivalence problem 
since 71 s T2 if and only if ^ o T  and 

T2 o T1 . 

M«0!      The non-partial solvability of the isomor- 
phism problem also follows directly from the non- 
partial solvability of the divergence problem. 
Given a schema   T    in the class    S    , construct a 

new schema   T»    also in    S^    obtained by replaolng 

each 11A1T statement in    Sj    by the statements: 

y - f(y); 
HALT    . 

Then   T    and   T'    are isomorphic if and only if 
T    diverges. 

Hf):      The non-partial solvability of the freedan 
problem is shown by reduction of Post's Correspon- 
dence Problem for nonempty strings (PCP) to the 
noni'reedom problem for Schemas in    S    .    The proof 

follows alone lines similar to a related proof in 
Paterson [lyfif] with the mechaniEm for effectively 
simulating two variables while usintf only one (as 
described in the proof of i(a),(b)). 

He):      There can exist no effective translation 
to a l'ree schema since if there did exist such an 
algorithm we could decide whether or not a (;iven 
schema of   S,    halts since the halting problem for 

free Schemas is trivially solvable. 

Proof of Theorem U (Unsolvabllity of    G.   ) 

The proof (joes alony lines quite similar to 
tht proof for Theorem }.    We first define a subset 
!:r    of the class of Schemas    r,v  .      S,  ,  like    S    , 

has two -.-ariables   jf,    and    y0 ,  one function sym- 

bol    f ,  and one predicate symbol   p ,    However, 
Sr    has the constraint that in any path trirou^h 

a schema of   Bg , after each statement that tests 

the variable   f.    there must be either one or two 

laiitctnontt that Lest    y,    (followed by u final 

Btaterauit or unoLlicr test of   y    )  -- note the for« 

uf the test statanciit of   S.    deflnod in tlie proof 
ofi(a),(b).   The haltinß and divergence problane   ' 
of   S(>   can bo .hown to be unsnlvable, and the 

talting and divergence problems of S^ can be re- 

duced to those of S^ . This implies the unsolva- 

bllity of problems (a)-(e) and (g) for   S.   .    The 

freedom problem (f) can be shown to be unsolvable 
on lines similar to the proof for 3(f),  i.e., by 
reducing PCP to the non-freedom problem and effec- 
tively simulating two variables while actually 
using only one. 

Proofs of Secondary Results 
In the following results the number of func- 

tions does not include  ..he individual constants. 

(!)    Schemas with One Variable.  Two Functions and 
General Equality Tests 

The class of flowchart Schemas with one vari- 
able,  two functions (no predicates) and general 
equality tests is unsolvable. 

If completely general equality tests are     ■ 
allowed it is easy to see that two funccion con- 
stants suffice to render the class of Schemas 
unsolvuble because more function letters can be 
"coded'" in terms of two functions.    For example, 
in ib we could use only two functions    f   and   g 
by making in the construction of   T,    fron    Tc    the 

3 5 
following substitutions:    for all terms   t 
simultaneously substitute: 

f(f(t))      for      f(t) 

ß(f(t)) 

for 

for 

for 

Cit) 

fa(t) 

All tne unsolvabllity results go through on 
mal'.ini: tMs substitution. Similar substitutions 
can be nude to show the unsolvabllity of freedom. 

(ii)    gcher.as with IVo Variables,  Two Functions and 
KcLli-ioted Kquali^v Teats 

Tnc class of flowchart Echeii.as with two vari- 
ables mid two i\inctlons~i no predicates) wlUTtostE 
only of .t!io fonn    yT  I  i'(y.)    are uncolvable. 

Consider the class    S,.,    which is the came as 
I 

S^    but with the differcnid that there are two 

function constants    f.    aid    f0 ,  and no predicate 

constant. 
The conputation of any schema T. in S. can 

be simulated by a corresponding schema T_ in S , 

obtained by replacing every test statement of the form 

y^fiy,); 
if piy1) then .-oto L. else goto L 

by a test statement of the form 

/j - «yji 
M y^  -  t'Xy/)  then goto L.  else j^oto L, 
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path i-'liiB cctabljchcs the unsolvability 

01 (a)-(o) and (g) for the class S ' (note that 

the unsolvability of (c)-(e) and (J follows from 
the unsolvability of (b)). 

1'lJrtlier, the freedom problem too can be shown 
to be unsolvable by reducing PCP to it. The 
reduction ie  related to the corresponding reduction 
m Paterson [1967], but to do it v;ith 2 function 
symbols we need the additional "cleverness" of 
padding each symbol of the PCP with enough "bits" 
in order to allow for testing, to effect a non- 
deterministic search. 

(iii) Sehemas with One Function. Restricted 
Equality Tests 

Schemas with one function usinp tests nnly 
of the form y = y  are unsolvable. 

  ■! 

The halting and divergence problems for two- 
counter automata are known to be unsolvable 
(Hopcroft and Uliman [1969)),  and can be reduced 
to the halting and divergence problems for one- 
function Schemas in a rather direct rranner.    In 
the reduction process the only care that has to be 
taken is for the operation of incrementing one to 
a counter,  in which case the schema checks for^a 
looping interpretation as in Kxa-nple 5 of Appendix 
A.    The unsolvability of the equivalence,   inclusion, 
and isomorphism problems follows from the unsolva- 
bility of the halting and divergence problems. 
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